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A local problem of a subsonic gas flow past a finite convex corner is studied. 
Complete gasdynamic equations are used to show that a shock-free flow is im- 
possible if a singularity develops at the corner point [l] and the wall behind 
the corner is rectilinear. A solution adjacent to the centered rarefaction wave 

downstream is found ineffective in the neighborhood of the singular character- 
istic emerging from the corner point. A uniformly effective solution is obtained 
using the method of deformed coordinates, and a shock wave is constructed. 

1. Flow ahead the shock wave. 

Fig. 1 

Q = go (2) Y + Rk (2) Y’+2k’3, 

Let us consider a steady plane subsonic 
flow past a perfect gas with the ratio of 
specific heats y assuming that the walls 
of the finite convex corner are rectilinear 

(Fig. 1). A local solution for a finite va- 

lue of the corner angle @ in the region 
AOC is known [2, 31. The problem the- 
refore is that of constructing a solutionin 

the region COD. Without affecting the 
general character of the arguments that 

follow, we can assume that the flowto the 
left of the last characteristic OC emer- 
ging from the corner point 0, is potenti- 
al. Then the solution [3] in the zone 
BOC of the centered rarefaction wave 

can be written in the form (Z isfixed)[4] 

Y * 0, 2=x/y (I. I) 

go = vei (1 + 2*)‘1* sin 0, 0 = v arctg 2, v* = (y - 1) i 

/ (Y + 1) 

gm = (sin o)~I~ (cos ~)r+~lsv’ (1 + ~‘)‘~r+““~ IA, + H, (o)] 

H, = 1 (sin CO)-““~ (cos o)-~-~‘~“~E,,, (0) do 

Em = - (y + 1) (1 + 2ml 3)-i (sin 20)-‘(I + ZZ)~I~-~I~G~ (0) 

u = U, (z) + Uk (z)y2”13, 1’ = v. (z) + vk (z) y*i3 

u I 
m = g,, v, = (1 + 2m 1 3) g, - zg,‘, m =o, I,... 

Here a,, TJ ancJ V are respectively the potential and the components of the Velocity 

vector w along the z - and Y-axes; k = 1, 2, . . . denotes Summation; G, are 
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functions of the previous approximations (Gl =_ 0); A,,, are constants which arefound 
by combining with a solution of the type given in [Z]. In particular, we have 

Al=-% C”” (y + l)‘l” (y - I)-*‘*, Aa = 0 

where C is an arbitrary constant depending on the solution of the problem in the whole. 
To simplify the boundary conditions and the solution in the region COD , we pass to 

the rectangular z’-, +r/-coordinates obtained from the x -, y -coordrnates by rotating 
them through an angle fi (see Fig. 1). Then, with the angular coefficient z, of thecha- 
racteristic OC at the point 0 known and representing a root of the equation 

zc - go (2 cl I go’ (2 cl = tg P 
we can rewrite the solution (1.1) in the form 

@ = q; (E), + qfzo (E) x*+s’3, x --f 0, % = m 1 x (1.2) 

0 

4m 
= gmr)i+w3, q(g) =Lt %B-lcosfl-sinfi, m=O,f,... 

B = v-i tg NC, o, = y arctgz, 

(the primes are omitted). From (1.2) we obtain the equation of the characteris&z OC 
in the form 

% = 1 _t %kOxsV (I.31 

Here 

um 
0 

= (u, cos p - urn sin p) @amls 

0 
Vm = (1.4, sin p + urn cos @) q2m’Y, m=i,2,. . . 

where Ua = uoo (1) denotes the velocity of a homogeneous supersonic flow adjacent 
to the simple centered rarefaction wave, and em0 (%) are functions of the preceding ap- 
proximations (er* =_ 0). 

In the first approximation the velocity potential at the characteristic OC is given by 

(Q)oc = u&r + qrO (1) xSh + 0 (x’h) (I.51 

We assume that the further extension of the flow is shock-free. Then the solution of the 
problem within COD must be solved with the data at the characteristic Of’ and on the 

wall OL) (flow past condition). The solution with 5 --f 0 and fixed % must have the 
form (1.5) where qlo (1) is replaced by ql (E) satisfying the equation 

(1 - 6”) q; + 4/s Eq1’ - ‘“/a Ql = 0 

the general solution of which is 

qx=A, (1 - ri;p + A, (4 + ip GQ 

where *A, and A, are arbitrary constants. 
From (1.6) it follows that ql” (E) -+ 00 as % 3 1 if only A, # 0. For a rectilinear 

wall OD the coefficient hi cannot be zero, consequently infinite accelerations arise on 
the straight line % = 1 and a shock-free flow which formally existsbecomes devoid of 
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physical sense. This was shown in [S, 63 for the case of p < 1 by studying the transo- 
nit equations. 

2. Flow behind the 8hock wave. We shall now assume that a curved shock 
wave, the form of which is to be determined, serves as a boundary separating the regions 

BOC and COD . We write the conditions at the discontinuity in the form 

[w, 1 = 0, wnown = 1 - Y2G2 (2.1) 

Here w,, and w, are the velocity vector w components normal and tangential to the dis- 
continuity and [XI = X - X” denotes the jump in the value of X during the pas- 
sage through the discontinuity. As the initial system of equations we use the transformed 
continuity and vorticity equations 

div [(I - ws)N~-l) WI = 0 (2.2) 

rot 
II 

w x rotw 
l-&z = 1 0 

Analyzing the first boundary condition of (2.1) we find that the solution of (2.2) should 
be sought in the form 

u = u, + Uk (E) X2k’s, V = Vk (E) Z?+s (2.3) 

where u and V are components of the velocity vector along the axes of the new coor- 
dinate system. According to the flow past condition we have 

v, (0) - 0, m=l,2, .*. 

From the first condition of (2.1) and from (2.3) it follows directly that the shock in- 
tensity at the corner apex is zero. The coefficients u,and v, (m = 1, 2 ,. . . ) sa- 
tisfy the following system of ordinary differential equations : 

Vl7t’ - B (21, mu,,, - Eu,‘) = BP,,, (E) 

elsmv, - &,’ - Bun,’ =3 BP, (E) 

where P, and P, are functions of the preceding approximations (Fr 3 PI = Ps s 
0). Assuming that 

V, = (~+~!m)s,~~)-19,‘~~)-S P&G (2.4) 

0 

v,n = Bsn' (5) 

we obtain the following equation for determining p;n : 

(i--P)~,“+~mfp,‘-~m(1+~m)~* = 

k 

(2.5) 

&+EP,-$-m \ P&M 
0 

The general solution of the homogeneous equation corresponding to (2.5) has the form 

Qm (0 = Ln (1 - E) i+smls + As, (1 + g)i+M/* 

Knowing this solution we can write the general solution of (2.5). After satisfying the 
flow past condition, we obtain 
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q1 I u, = c, (I.“, + py, h = I - g, f.4 = 1 + E 

q* I u, = c* (7LQ -t p> -t a~~(k+!)‘3~(6-k)‘3* k = 1, 2, 3, 4 

a, = a4 = -412 Iy + 1 -t (y - 3) B21 DC, 

a2 = a, = - *v,* (7 + 1) Mm?, 

D = WC, I EP, _w = 1 -t B* 

4s / &I = c, (AS + p8) - Q* c (p/*p’% + ~‘%p) + 

b&k’8~(9-k)‘3, k = 1, 2, . . . . 8; p, (g) = 2c.F; 

C=I -21,a,2 / C,, b, = b8 = Vsa,a2 I C, 

(2.6) 

(2.7) 

(2.8) 

b ,=b,=-${-?!$t$% 
1 

+ + 147 (y + 1) - (3y t 11) a] al f 

10 (y + 1) wa* + 

b3=b8= -~(14(y+1)IM2C,+2(7(y-~I)-(y-3)B2]aa+ 

-g (yf 1) wcl*) 

The constants C,, C,, C, and C, appearing in (2,4),(2,6)- (2.8) are found from the 

conditions at the discontinuity. 

The solution (2.3) does not hold in the region where h N LC** This is explained by 
the fact that qs’ (g), Qs (5) -+ 00 for t -+ 1 and the conditions at the discontinuity 
can no longer be met. The accumulation of singularities in the solution (2.3) can be pre- 

vented by deforming the coordinates [7, 31. To do this we write the required solutionin 

the parameteric form 
U = ua + Uk (s) P@, U = Vk (s) X*k’a, (2.9) 

E = s + & (s) X2&@ 

where the coefficients Uk, Vk and the deformation EA are to be determined. The va- 
lue of the parameter s = 1 corresponds to the special characteristic OC’ , which is the 
only characteristic in the region C’OD which emerges from the corner point andmoves 

to the left [9]. To find the solution in the form (2.9), we introduce an auxilliary function 
which is a velocity potential in an irrotational flow past the corner 

0 = U& + 41 (8 d'* + q2 (E) 2”’ 4 q3 (E) 9 + 0 (~“‘9 (2.10) 

where the coefficients are given by the formulas (2.6)- (2.8). Using (2.10) we can 

write the solution (2.3) in the form 

u = Q, - BZCy2, u = U+, 

and from this we conclude that the parametrization of (2.9Ais equivalent torepresenting 
the function Q in the form 

0 = uq + Q1 (s) i’* + Q2 (s) 5”’ + Qa (s) z3 + 0 (XL*‘*) 
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Carrying out the re-expansion of the functions (2.10) as given by the method in [8] 

we find, that Qlr Qa and Qs are determined by the formulas (2.6)- (2.8) in which E 
is replaced by s , and the right-hand sides of the first equations in (2.7), (2.8) comple- 
mented by the equations containing the deformations, namely 

t&Q1 I u,, (EtQ2' + EzQ1' - ‘@,“,Q~“) I U,, 
Requiring that Q2’ and Qs’ be bounded when s = 1, we find 

Er = 3/s~liu~ i c,, Ee = 3J 527@2 I C, 

All subsequent deformations can also be chosen as constants. In general we have 

6(Y--1) E m 

uo - 2m (sin 2G2 [ ,:““:s,, V, - Urn] + em (1) (2.11) 
;=1 

where e, (s) are functions of the preceding approximations (er 3 0). The coeffi- 

cients U, and V, of the expansions (2.9) have the following form for m = 1, 2, 3 : 

u, = fV8 Q1 - sQ,‘, U, = 713Q3 - sQal - “/3E,Q1 

U3 = 3Q3 - sQ3’ - “,3~lQ,’ - ‘f3ljlaQ; - C,s3, v;, = BQ,’ 

We can check by direct substitution that the flow past conditions of the wall O& hold 

V, (0) = 0, v, (0) = ErVr’ (0) 

v, (0) = gx,lv; (0) + EaVi (0) - % E31Vl” (01 

We assume that the equation of discontinuity has the form 

8 = 1 + or& + &%“” + 63zz + 0 (a+) 

(h = --s3xa + 0 (&)) 

The coefficients I&“, 5: are found using (1.4). The unknowns 6, and s3 are connected 

by the following relation: 
6s - s3 = E3 (2.12) 

The difference between the discontinuity and the characteristic is described by the co- 

efficient ~8; 6, d eno t es a third order deformation although it should not be obtained 

by studying the fourth order approxima~on since &s represents, on the other hand, a co- 
efficient of the special characterisitc computed from the third approximation. Taking 
into account the conditions (2. l), we find from (1.4) and (2. ll), as was to be expected, 

that & = Er”, $s = 6s” . 
The second condition of (2.1) is satisfied identically in the first and second approxi- 

mation, while in the third approximation it yields 

Setting s3 - Keri s I 27, we reduce the system (2.12),(2.13) to a single equation 
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which has a single positive real root. For fi < 1 the above equation becomes 

K3 + ‘lzK2 + 516K - =lae = o 

with the approximate value of the root K = 0.5132. 
The constants C, and C4 are found in the form 

c, = lJoZ’s 12g, (zc)l-“y7~ (2 & c, = 0 

Since C, < 0, we also have s3 ( 0. Then from (2.13) it follows that the discontinu- 
ity lies on the left of the characterisitc OC. This was shown from the case fi < 1 in 

[S] using the transonic equations. It can be directly established that the velocity behind 
the shock is supersonic, and we have 

Since the coefficient in front of x2 is negative, it follows that the discontinuity construc- 

ted is a shock wave. 
The authors thank S. V. Fal’kovich for valuable comments. 
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